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FIG. 8. Density of states contribution and energy surfaces assoc
iated with critical points in the E (k) spectrum. 

points16 will occur when V(E(k» = O. Thus, the critical 
points in k space will be found where the energy bands 
are very flat . Since E(k) is a continuous function, we 
may expand the energy about the critical energy Ec(k ) 
as a Taylor series, where the linear terms are zero since 
V(E(k» =O. Thus, we have 

E(k) = Ec(k)+alq12+a2q22+aaqa2+ . .. , (1) 

where q=k-kc andai=a2E(k)/aki2. 
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FIG. 9. Energy dependences of 6.Tc (solid line) and aT.laE? 
(broken line) as EF passes through a critical point in the E (k) 
spectrum. S" S 2, min ., and max. refer to the critical points 
illustrated in Fig. 8. 

16 J. M. Ziman, Principles oj the Theory oj Solids (Cambridge 
University Press, New York, 1964), p. 48. 
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FrG. 10. Breakdown for Re of 6.Tc as a function of pressure into 
its linear and nonlinear contributions. 

If, for example, all the a. were positive, then there 
would be a local minimum in E(k), and the additional 
contribution to the density of states would be 

I:lN(E)=O, E<Ec , 

(2) 

The energy dependence of I:lN (E) for this and the other 
three possible types of critical points is shown in Fig. 8, 
where S 1 and S 2 denote saddle poin ts of indices 1 and 2. 
The shapes of the constant energy surfaces represented 
by Eq. (1) with all possible combinations of signs for 
ai are also shown. Thus, as the energy passes through 
the critical energy corresponding to a local minimum 
in E(k), a new surface is formed; or, conversely, on 
passing through a local maxima, a surface is destroyed. 
A transition through a saddle point results in the 
formation (or disruption) of a "neck," i.e., the transition 
from an open to a closed section of Fermi surface (or 
vice versa). 

In the nearly free-electron approximation of a metal 
with pressure-independent potentials, the topology of 
the Fermi surface remains unchanged under an isotropic 
compression, but changes may occur if there is distor
tion. However, calculations based on the pseudo
potential approximation to the nearly free-electron 
model show that the form factor depends upon volume 
and thus the connectivity of the Fermi surface at 
boundary points can change under isotropic compres-
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sion.I7 In metals containing non-s electrons, flat regions 
in E(k) curves may also occur at k values other than 
boundary points. If these regions are associated with 
strong hybridization, then changes in the lattice 
parameter can produce significant energy shifts relative 
to the Fermi energy. Thus, when these regions lie 
close to the Fermi surface, abrupt changes in topology 
can occur. 

The first systematic study of the effects of such 
abrupt changes in topology on the thermodynamic 
and kinetic properties of a metal was undertaken by 
Lifshitz.16 Markarov and Bar'yakhtar4 extended this 
study to include the effects on the superconducting 
properties by introducing the change in the density of 
states into the energy-gap equation of the Bordeen
Cooper-Schrieffer (BCS) model,l8 They investigated 
the behavior of Te and aTe/ aEp as functions of Ep 
(the Fernu energy) at energies close to Ee; their results 
are summarized in Fig. 9. Over the energy range 
(Ee-k6D);5;Ep;5; (Ee+k6D), where Eb is the Debye 
temperature, Te increases sharply at the critical points 
corresponding to S 2 or a minimum, whereas T e decreases 
sharply at S1 or a maximum. In all cases, aTe/ aEp 
exhibits an extremum at E p= Ee. From an experimental 
point of view, we are concerned with a Te/ aP, but 
since we may consider aTe/ aP= (a Te/ aEp) (aEp/ ap) 
and since we may reasonably assume that aEp/ ap will 
vary slowly with pressure, any rapid variation of 
aTe/ aEp will also appear as a rapid variation of 
aTe/aP. 

In Fig. 10, we demonstrate the breakdown of 6.Te 

for Re into its linear and nonlinear components. The 
variation of (aTe/ aP)nonline8.r as a function of pressure, 
derived from 6. Te (nonlinear) is also plotted. The 
sinlilarity between the pressure dependence of !::.Tc 
and iJTe/ ap for the nonlinear contribution and the 
energy dependence curves at the points S 2 and minimum 
shown in Fig. 9 is evident. Similar plots were made for 
the Re-Os alloys containing less than 0.2-at.% Os and, 
in particular, we show the plot for the O.l1-at.% Os in 
Fig. 11. 

In the case of pure Re, the nonlinear contribution was 
estimated to start at pressures above ,..",2 kbar and a 
maximum occurs in (aTe/ aP)nonlin •• r at a pressure 
P e,..",12 kbar. On alloying with osmium, the pressure 
at which the nonlinear contribution commences 
rapidly falls to zero, as shown for example, by the 
curve for the addition of O.l1-at.% Os. In addition, it is 
found that the curve for (aTe/ aP)nonlines.r does not fall 
smoothly above Pc, but has a step approximately 
6 kbar wide. This behavior was not observed for pure 
Re, but this may well be due to the limitations of our 
pressure range. This form of the curve for the Os alloys 
suggests the possibility that more than one critical 

17 W. A. Harrison, Physics of Solids at High Pressure (Academic 
Press Inc., New York, 1965), p. 3; L. M. Falicov, ibid. p. 30. 

18 J. Bardeen, L. Cooper, and J. Schrieffer, Phys. Rev. 108, 1175 
(1957). 
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FIG. 11. Breakdown for Re O.l1-at.% Os of ATe as a function of 
pressure into its linear and nonlinear contributions. 

point may be involved. Furthernlore, Pc decreases 
roughly linearly with the addition of Os and goes to 
zero at the critical composition """0.14 at.% (see Fig. 
12). It is evident from Figs. 6 and 7 that Pc increases 
with concentration in the Re-W and Re-Mo systems, 
but, unfortunately, our pressure range was insufficient 
to reach Pc for these systems. 
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FIG. 12. Variation of P e with Os concentration. 


